The television picture

Human perception of motion

A television system involves equipment located at the source of production, equipment located in the home of the viewer, and equipment used to convey the television signal from the producer to the viewer. The purpose of all of this equipment, as stated in the introduction to this article, is to extend the human senses of vision and hearing beyond their natural limits of physical distance. A television system must be designed, therefore, to embrace the essential capabilities of these senses, particularly the sense of vision. The aspects of vision that must be considered include the ability of the human eye to distinguish the brightness, colours, details, sizes, shapes, and positions of objects in a scene before it. Aspects of hearing include the ability of the ear to distinguish the pitch, loudness, and distribution of sounds. In working to satisfy these capabilities, television systems must strike appropriate compromises between the quality of the desired image and the costs of reproducing it. They must also be designed to override, within reasonable limits, the effects of interference and to minimize visual and audial distortions in the transmission and reproduction processes. The particular compromises chosen for a given television service—e.g., broadcast or cable service—are embodied in the television standards adopted and enforced by the responsible government agencies in each country.

Television technology must deal with the fact that human vision employs hundreds of thousands of separate electrical circuits, located in the optic nerve running from the retina to the brain, in order to convey simultaneously in two dimensions the whole content of a scene on which the eye is focused. In electrical communication, however, it is feasible to employ only one circuit (i.e., the broadcast channel) to connect a transmitter with a receiver. This fundamental disparity is overcome in television practice by a process known as image analysis, whereby the scene to be televised is broken up by the camera’s image sensors into an orderly sequence of electrical waves and these waves are sent over the single channel, one after the other. At the receiver the waves are translated back into a corresponding sequence of lights and shadows, and these are reassembled in their correct positions on the viewing screen.

This sequential reproduction of visual images is feasible only because the visual sense displays persistence; that is, the brain retains the impression of illumination for about one-tenth of a second after the source of light is removed from the eye. If, therefore, the process of image synthesis takes less than one-tenth of a second, the eye will be unaware that the picture is being reassembled piecemeal, and it will appear as if the whole surface of the viewing screen is continuously illuminated. By the same token, it will then be possible to re-create more than 10 pictures per second and to simulate thereby the motion of the scene so that it appears to be continuous.

In practice, to depict rapid motion smoothly it is customary to transmit from 25 to 30 complete pictures per second. To provide detail sufficient to accommodate a wide range of subject matter, each picture is analyzed into 200,000 or more picture elements, or pixels. This analysis implies that the rate at which these details are transmitted over the television system exceeds 2,000,000 per second. To provide a system suitable for public use and also capable of such speed has required the full resources of modern electronic technology.

Image analysis


The first requirement to be met in image analysis is that the reproduced picture shall not flicker, since flicker induces severe visual fatigue. Flicker becomes more evident as the brightness of the picture increases. If flicker is to be unobjectionable at brightness suitable for home viewing during daylight as well as evening hours, the successive illuminations of the picture screen should occur no fewer than 50 times per second. This is approximately twice the rate of picture repetition needed for smooth reproduction of motion. To avoid flicker, therefore, twice as much channel space is needed as would suffice to depict motion.

The same disparity occurs in motion-picture practice, in which satisfactory performance with respect to flicker requires twice as much film as is necessary for smooth simulation of motion. A way around this difficulty has been found, in motion pictures as well as in television, by projecting each picture twice. In motion pictures, the projector interposes a shutter briefly between film and lens while a single frame of the film is being projected. In television, each image is analyzed and synthesized in two sets of spaced lines, one of which fits successively within the spaces of the other. Thus the picture area is illuminated twice during each complete picture transmission, although each line in the image is present only once during that time. This technique is feasible because the eye is comparatively insensitive to flicker when the variation of light is confined to a small part of the field of view. Hence, flicker of the individual lines is not evident. If the eye did not have this fortunate property, a television channel would have to occupy about twice as much spectrum space as it now does.

It is thus possible to avoid flicker and simulate rapid motion by a picture rate of about 25 per second, with two screen illuminations per picture. The precise value of the picture-repetition rate used in a given region has been chosen by reference to the electric power frequency that predominates in that region. In Europe, where 50-hertz alternating current is the rule, the television picture rate is 25 per second (50 screen illuminations per second). In North America the picture rate is 30 per second (60 screen illuminations per second) to match the 60-hertz alternating current that predominates there. The higher picture-transmission rate of North America allows the pictures there to be about five times as bright as those in Europe for the same susceptibility to flicker, but this advantage is offset by a 20 percent reduction in picture detail for equal utilization of the channel.


The second aspect of performance to be met in a television system is the detailed structure of the image. A printed engraving may possess several million halftone dots per square foot of area. However, engraving reproductions are intended for minute inspection, and so the dot structure must not be apparent to the unaided eye even at close range. Such fine detail would be a costly waste in television, since the television picture is viewed at comparatively long range. Standard-definition television (SDTV) is designed on the assumption that viewers in the typical home setting are located at a distance equal to six or seven times the height of the picture screen—on average some 3 metres (10 feet) away. Even high-definition television(HDTV) assumes a viewer who is seated no closer than three times the picture height away. Under these conditions, a picture structure of about 200,000 picture elements for SDTV (approximately 800,000 for HDTV) is a suitable compromise.

The physiological basis of this compromise lies in the fact that the normal eye, under conditions typical of television viewing, can resolve pictorial details if the angle that these details subtend at the eye is not less than two minutes of arc. This implies that the SDTV structure of 200,000 elements in a picture 16 cm (0.5 foot) high can just be resolved at a distance of about 3 metres (10 feet), and the HDTV structure can be resolved at about 1 metre (3 feet). The structure of both pictures may be objectionably evident at short range—e.g., while tuning the receiver—but it would be inappropriate to require a system to assume the heavy costs of transmitting detail that would be used by only a small part of the audience for a small part of the viewing time.

Picture shape

The third item to be selected in image analysis is the shape of the picture. For SDTV, as is shown in the figure, the universal picture is a rectangle that is one-third wider than it is high. This 4:3 ratio (or aspect ratio) was originally chosen in the 1950s to match the dimensions of standard 35-mm motion-picture film (prior to the advent of wide-screen cinema) in the interest of televising film without waste of frame area. HDTV sets, introduced in the 1980s, accommodate wide-screen pictures by offering an aspect ratio of 16:9. Regardless of the aspect ratio, in both SDTV and HDTV the width of the screen rectangle is greater than its height in order to incorporate the horizontal motion that predominates in virtually all televised events.


The fourth determination in image analysis is the path over which the image structure is explored at the camera and reconstituted on the receiver screen. In standard television, the pattern is a series of parallel straight lines, each progressing from left to right, the lines following in sequence from top to bottom of the picture frame. The exploration of the image structure proceeds at a constant speed along each line, since this provides uniform loading of the transmission channel under the demands of a given structural detail, no matter where in the frame the detail lies. The line-by-line, left-to-right, top-to-bottom dissection and reconstitution of television images is known as scanning, from its similarity to the progression of the line of vision in reading a page of printed matter. The agent that disassembles the light values along each line is called the scanning spot, in reference to the focused beam of electrons that scans the image in a camera tube and recreates the image in a picture tube. Tubes are no longer employed in most video cameras (see the section Television cameras and displays), but even in modern transistorized cameras the image is dissected into a series of “spots,” and the path of dissection is called the scanning pattern, or raster.

Leave a Reply

Your email address will not be published. Required fields are marked *